
Transactions on Transport Sciences | Peer-Reviewed Open Access Journal
DOI: 10.5507/tots.2020.008

ToTS Volume 11, Issue 2: pg77–pg83
Palacky University in Olomouc

Visualizing crash data patterns
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ABSTRACT: This paper demonstrates an approach 
that makes it easy to find patterns in traffic crash data-
bases, and to specify their statistical significance. The 
detected patterns might help to prevent traffic crashes 
from happening, since they may be used to tailor cam-
paigns to the community at hand. Unfortunately, the 
approach described here comes at a cost: it identifies 
a considerable amount of patterns, not all of them are 
being useful. The second disadvantage is that is needs 
a certain size of the data-base: here it has been applied 
to a data-base of the city of Berlin that contains about 
1.6 Million (M) crashes from the years 2001 to 2016, 
of which about 0.9M had been used in the analysis.
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1. INTRODUCTION

Analyses of crash data-bases may search for patterns 
that can be exploited for prevention of future crashes. 
There are well-known approaches for this that range 
from simple tables (e.g. reports as the ones published 
by statistical authorities) and contingency tables 
(see Tunaru (1999) or Kateřina et al (2019)), to so-
phisticated models for crash likelihood (Mannering 
(2018)) that try to summarize these data into models 
whose parameters are estimated from the data.

Especially the official reports of crash data by 
the various statistical authorities are often large 
contingency tables, where it is difficult to see at one 
glance what might be important, and what not. Here, 
a means to visualize these data-bases is investigated. 
It draws on methods from data science analysis such 
as in James et al (2013), and has therefore a prefer-
ence toward data-bases with large number of crashes. 
The contingency tables used here will not work well 
for data-bases with a small number of crashes.

2. METHODS AND DATA USED

2.1 Methods
The method to look for patterns to be used here is 
a mixture of several well-known approaches. It draws 
from what is used in data science analysis by comput-
ing a kind of correlation between all those variables 
that may seem interesting or helpful to the analyst. 
Of course, this selection of variables is to a  certain 
degree subjective, or, to put it more neutral, problem-
specific. The method to compute this correlation 
draws on contingency tables and their related Pear-
son residuals (see Agresti (2007) or Kateřina et al 
(2019)). To compare different correlations they need 
to be normalized which is done by using Cramér’s V 
(Cramer (1946)).  After ordering the correlations ac-
cording to their V-value, the most interesting ones are 
easily picked out. They can then analyzed into greater 
detail by looking at the matrix of the Pearson residu-
als and display them in a mosaic plot. Mosaic plots 
are described into greater detail by way of an example 
in Figure 3.

2.2 Data
The crash data-base of the city of Berlin from the 
years 2001 – 2016 has been used here. To avoid deal-
ing with small numbers and therefore yield statistical 
meaningful results, the data have been filtered as fol-
lows. The raw data contain for each crash as many 
records as there are people involved, where the first 
record for each crash belong to the participant that 
has been identified as the main culprit of the crash. 
This has been aggregated in one record per crash, 
where each record contained (which is a subset of all 
the variables in the original data-set):

•	 Year (year), hour (hour), day of the week 
(weekDay).  

•	 Number of fatalities (nFatal), number of 
heavily injured (nHeavy), and the number of 
lightly injured people (nLight). 
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•	 Traffic type of first participant (v1Type), of 
the second participant (v2Type), the type of 
crash (crashType), and the collision diagram 
(colDia). The crash types are defined as 
follows: 1: crash while driving alone, 2: crash 
while turning, 3: crash when crossing, 4: crash 
caused by crossing pedestrian, 5: crash with 
vehicles parking, 6: crash in longitudinal 
traffic (both head-on as well as rear-end 
collisions), 7: anything else.

•	 Age (age) and sex (sex) of the first involved, 
and whether there was alcohol intoxication 
reported (BAC). Note, that BAC is a binary 
variable only.

•	 Temperature (temp), humidity (humidity), 
and average daily traffic (ADT) of the year 
2009 (adt2009) close to the place of the crash. 

The data-base contained the place of the crash as 
well, but this was only used to assign the three exter-
nal variables temperature, humidity, and adt2009. 
The ADT-values are from Berlin’s official traffic 
model, and they are there from several years (2005, 
2009, and 2014). Since the different years are high-
ly correlated, we have chosen to use just the middle 
year (2009).   

In addition to this, the data have been filtered as 
follows:

•	 Only crashes with two participants have been 
picked (about 92% of the data).

•	 Only the top 12 collision diagrams (about 
66% of the data) have been used, see below 
and Figure 1.

•	 Only the top seven traffic types have been 
used (passenger car (Car): 76.98%; lorries 
(Truck): 7.25%; bicycles (Bike): 3.63%; 
miscellaneous vehicles (Misc): 2.65%; 
pedestrians (Peds): 1.35%; regular bus (PT-
Bus): 1.14%; motorbike (MoBike): 1.11%)

This reduces the original data-base of 1,569,621 
to 913,556 crashes that fulfil the criteria above. The 
final step involved the discretization of the (almost) 
continuous variables like temperature, humidity, 
adt2009, and age, which are typically aggregated into 
10 categories of roughly equal size, with the exception 
of age. In age, a break at 18 years has been manually 
added to have a classification of participants younger 
and older than 18, the year where people in Germany 
can legally hold a driver’s license.

In the following, Figure 1 to Figure 5 contain 
visualizations that display a  few impressions of the 
data. First of all, in Figure 1 there is the distribution 
of the shares of the twelve most frequent collision di-
agrams. As already mentioned, these twelve collision 
diagrams cover almost 2/3 of all the crashes, so it is 
useful to concentrate on these. 

Since the data-base is so large, at least a  small 
test of the stability of the result displayed in Figure 
1 can be performed. This has been done by sampling 
many times randomly from the data-base. For each 
sample, the share of each collision diagram can be 
computed, and then, the average share and other 
statistics can be computed. It turns out, that the 
shares for these top twelve collision diagrams are 
fairly stable, i.e. in all samples the ranking is basi-
cally unchanged and even the shares do not fluctu-
ate a  lot. So, Figure 2 demonstrates that the result 
displayed in Figure 1 is fairly robust. 

It is also interesting to look whether some of 
the distributions change over the years, and in fact, 
they do. To analyze them, we make use of mosaic 
plots with an assumed model of independence (see 
Zeileis et al. (2007)). 

This method is explained with the example of 
Figure 3 that displays the change of the daily crash 
pattern over the 16 years of data. For each hour of 
the day i, and for each year j, there is a particular 
number of crashes reported, that makes the con-
tingency table  nij. A mosaic plot displays each box 
so, that its size is proportional to the nij . In addi-
tion, each box is colored according to its deviation 
(the Pearson residual rij ) to an expected count eij 
and the related standard deviation σ ij  of the ex-
pected count:

If the expected counts are drawn from a Poisson 
distribution, then the standard deviation is just the 
square-root of the expected counts eij and the second 
part of the equation is valid as well. 

The simplest possible model, and the one that will 
be used in all cases in this work, is to assume that the 
counts are independent of the combination of the 
time of the day and the year. In this case, the eij can be 
computed directly from the measured counts nij as 
follows:

(e)

(1)

(2)
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Figure 1: Share of the crashes of the twelve most frequent collision diagrams, together with a graphical representation 
of them and their number on the x-axis. The slanted bar in one of the arrows indicates the vehicle that caused the crash, 
a horizontal bar at the end of the arrow (in 61, 11, 58, and 111) a standing vehicle, the wiggles in 70 and 84 a side-swipe 
crash, and the unfilled arrowhead (in 58) a backward driving vehicle.

Figure 2: By sampling the data-base 50 times (and picking 10,000 crashes in each sampling), a distribution of the share 
of each collision diagram can be obtained. Note, that the y-axis has been scaled by a square-root to make small entries 
better visible.
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Here, Ni,⋅, N⋅, j  are the row and column sums of the 
matrix, and N = ∑i Ni is the number of observations 
in the database. A mosaic-plot now displays in addi-
tion to the size of the boxes also the Pearson residuals 
rij by coloring the boxes: a grey box indicates that it 
follows the expected counts; a red box indicates that 
the observed number of crashes in that category is 
lower than expected, while blue boxes indicate that it 
is higher than expected.

For the two variables time of day and year, there 
are a  lot of grey boxes visible in Figure 3, indicat-
ing that these two features are in fact independent 
of each other. This is not true for all of them, but it 
seems that the daily pattern of crash occurrences 
does not change much over the 16 years covered by 
the data-base.

However, by looking at other pairs of variables, 
changes do occur. In Figure 4, the collision diagrams 
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Figure 3: Mosaic plot of the number of crashes as function of the time of the day and year. The daily pattern can be seen 
easily, and it seems, that it does not change much over the years.
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Figure 4: Mosaic plot of the number of crashes as function of the collision diagram and year. 
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are followed over the years, and here, considerable 
changes can be seen. Especially the shares of the 
two most frequent collision diagrams change over 
the years: diagram #11 increases in share while #61 
decreases in share. There is currently no explanation 
available why this happens. 

As a  final example, the matrix of traffic partici-
pants is displayed in Figure 5. The majority of the 
crashes happen between two cars, in addition to this, 
a car-car crash is also more likely than expected from 
the naïve assumption of independence. Note, that 
a crash between a bike and a car where the bike driver 
is responsible also seem to happen less frequently 
than expected by the assumption of independence. 

3. RESULTS

So far, we have mostly analyzed a few picked variables 
and how they change over the years. In the following, 
a  more systematic path will be followed. To do so, 
a mosaic plot was computed for all the possible com-
binations of the k = 16 variables above. This yields 
k(k-1)/2 = 120 matrices of Pearson residuals. To 
compare these with each other with the goal of find-
ing a ranking between important and non-important 
correlations, an index is needed. There are a few that 
can be used, here it has been decided to use Cramér’s  
(Cramer (1946)). It is defined as follows:

where c is the number of columns and r is the num-
ber of rows of the contingency table. This corrects 
for the different shapes of the matrices and makes V 
a number in [0,1]: the larger V, the stronger are the 
two variables correlated, where correlation is defined 
in a very general sense. 

The results are displayed in Table 1 for the first 20 
strongest correlations. 

Some results in Table 1 are to be expected. For in-
stance, the crash type is derived from the collision di-
agram, it is a kind of aggregation, and therefore, the 
two should have a strong correlation, i.e. a large value 
of V. The next two are not too surprising as well, most 
likely it stems from the prevalence of cars among the 
crashes. 

In Figure 6, just three mosaic plots of the entries 
4, 6, and 11 of Table 1 are displayed.

A few interesting results can be picked from these 
plots: 

•	 Crash participants who are younger than 18, 
and between 24 and 29, have a considerably 
larger chance to get involved in a bike crash. 
Also, the below 18 pedestrians are at a larger 
risk than expected from the assumption of 
independence.

Figure 5: Mosaic plot of traffic types of the first and the second participant of the crashes.

(3)
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•	 With cars, the youngest and the oldest drivers 
have an increased risk, as well as almost all 
truck drivers

•	 Alcohol abuse when driving has a strong 
temporal pattern, with a peak of the share 
near 3 o’clock in the morning.

•	 The crash-type also has an interesting pattern 
as a function of age. In addition to this, it is 
different for the two sexes included in the 
data-base (not shown here). 

Again, the robustness of this approach has been 
tested by chopping the data-base randomly into ten 
sub-parts, and repeat for each of these subparts the 
procedure above (computation of the matrix and of 
Cramér’s V). This, then, leads for each of the sub-
parts to an individual ranking. These different rank-
ing can be compared by assigning the average rank 
with the global rank obtained from the application of 
this method to the whole data-base. It shows, that the 
ranks are fairly stable, with a  standard-deviation of 
each rank typically smaller than 3.

4. CONCLUSIONS

Crash data contain highly significant patterns. Tools 
like mosaic plots are useful to visualize and enable us 
to find those patterns. In fact, it seems that they find 
too many patterns (Figure 6 shows only 3 out of the 
120 possible patterns, and of course one may ques-
tion the original choice of parameters), so the ques-
tion for future work is how to work with these results, 
and how to best obtain information from them that 
can be used in the practitioners’ daily work. 

Another avenue of future research is to include 
other data into this analysis, so that the risk, e.g. in 
form of vehicle miles travelled can be taken into ac-
count. One step in this direction would be to have as 
a model something that is proportional to the expo-

Table 1: Results of the correlation analysis

Rank Column Row Cramer’s V

1 crashType colDia 0.754

2 crashType v1Type 0.400

3 colDia v1Type 0.256

4 age v1Type 0.228

5 nLight v2Type 0.208

6 hour BAC 0.207

7 sex v1Type 0.207

8 colDia v2Type 0.206

9 crashType v2Type 0.173

10 temp Humidity 0.169

11 crashType age 0.161

12 crashType nLight 0.148

13 crashType adt2009 0.145

14 nLight v1Type 0.135

15 nHeavy v1Type 0.128

16 crashType nHeavy 0.123

17 nLight colDia 0.111

18 colDia adt2009 0.111

19 BAC v1Type 0.098

20 v1Type v2Type 0.097
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Figure 6: Mosaic plots of entries 4, 6, and 11 in Table 1.
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sure of the different groups. Demand data-bases such 
as the German MiD (MiD 2019) can help in this task, 
but our initial approach was not successful because 
the data-base for the city of Berlin had not enough 
trips recorded that could be used e.g. to compare the 
crash pattern with the demand pattern (as function of 
day and hour, e.g.).

Also, higher dimensional generalizations of this 
approach do exist and may be interesting to explore. 
These do, however, become difficult to work with be-
cause of the curse of dimensionality, which will rap-
idly lead to too small numbers in the boxes. 

Finally, when we look at some of the mosaic plots, 
it might not straightforward to describe even the re-
lationship between the two variables that make such 
a plot by a  linear model. One particular difficult ex-
ample is in Figure 6 the relationship between age and 
crash type, where a  very complicated pattern could 
be seen. If the analyses put forward here are of any 
interest, they may demonstrate that more complicat-
ed models than just linear ones might be needed to 
model crash probabilities.  
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