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ABSTRACT: Correct suspension parameters determination is one of the most important design 
issues in the development of each type of car. The aim of the suspension design in the field 
of race cars is to provide ideal operating conditions for the tire and to allow it to generate 
the maximum amount of traction, braking and lateral forces which determine a vehicle’s 
acceleration capabilities. This article describes the determination of the Formula Student/SAE 
car suspension parameters related to the vertical dynamics of the car as a basic point in tuning 
up the suspension on the car itself in real operating conditions.  
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1 INTRODUCTION 

Suspension is one of the most important pieces of equipment on each car. It has different 
functions: it carries all the vehicle’s loads; maintains the correct wheel alignment to the ground; 
reduces the effect of shock forces when passing ground disturbances; controls the vehicle’s 
longitudinal and lateral speed, and maintains the tire contact patch in contact with the ground 
for the maximum time possible. The mentioned requirements are provided by different 
suspensions parts divided into the guiding elements and force generating elements. 
In the following articles, the procedure for the determination of the spring rate and damping 
rate is presented. The numerical values of the mentioned constants are computed for a Formula 
Student/SAE car and later used when building the real Formula Student/SAE car at CULS 
Prague. 

2 DETERMINATION OF SPRING RATES 

The described approach for the determination of all the necessary suspension parameters 
related to the vertical dynamics is based on a quarter-sized car model. The basic points 
for the suspension design parameters are the mass properties of the vehicle (see tab.1). 
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Table 1: Vehicle mass properties. 

Constant Value Unit Signification 

m  300 [ kg ] overall vehicle mass 

wF   / Rw  45 / 55 [ % / % ] mass distribution related to front / rear axis 

mw=m FF  135 [ kg ] overall mass on front axis 

mw=m RR  165 [ kg ] overall mass on rear axis 

uFm  27.78 [ kg ] overall unsprung mass on front axis 

uRm  29.11 [ kg ] overall unsprung mass on rear axis 

UFFsF mm=m   107.22 [ kg ] overall sprung mass on front axis 

URRsR mm=m   135.89 [ kg ] overall sprung mass on rear 

 

According the suggestions from literature (Milliken & Milliken 1995) for low-downforced  
racing cars, the initial choice of ride frequencies is as follow:  front ride frequency                

nFf  = 2.1 Hz, rear ride frequency, nRf  = 1.9 Hz   Then ride rates for front  rFK   and rear  rFK   
end of the vehicle, with respect to corner (either left or right which equals).  
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With spring rate 1125000 Nm=Kt  of  chosen tire Hoosier 20x7.5x13 - pressure 14 PSI  
(Honzík , 2008) 
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Final real spring rates RsFK ,  must be recalculated using the so-called "installation ratio"  IR  
(Milliken & Milliken, 1995)  defined as  rate of change of spring compression with  wheel 
movement.  To slightly simplify the non-linear function for  pull-rod type suspension, 
installation ratios have to be dealt with as a constant   1,50 =IR=IR FF  
and    1,40 =IRIR RR  . Then  
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3 CALCULATION OF ANTI-ROLL BAR PARAMETERS FOR DESIRED ROLL 
GRADIENTS 

Roll gradient  gdegRG /  gives information on how much the body rolls due to the lateral 
acceleration of the whole car. The desired  set up is up to 1.5° / 1g, referred to by suggestions 
given in (Milliken & Milliken, 1995) as the Formula Student/SAE  car achieved a max. lateral 
acceleration of about 1.5g. At first, roll stiffness is computed using front and rear track 
( m=tF 1,230 , m=tR 1,205 ), spring rates RwFK , .  
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The next step in the determination of anti-roll bars is the computation (Milliken & Milliken, 
1995) of the height of the center of gravity of the sprung mass  Sh , sprung mass distribution  

Sa   and rolling  moment lever arm  RMh  (with the help of used variables: height of the center 
of gravity of the whole car m=h 0,38  , wheel radius m=rF 0,26  , m=rR 0,26 , and front / rear 
roll center heights m=zF 0,04  , m=zR 0,06 ). 
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For anti-roll bars stiffness φBK , the calculation of the rolling moment per 1g of lateral 
acceleration, yφ AM /  and the computation of the overall desired roll stiffness φK is required.  
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The recommendation (Milliken & Milliken, 1995) is to start with a total lateral load distribution 
to be 5% more than the weight distribution  wF   at the front axle. Based on this fact, 
the required anti-roll bar stiffness for the front and rear axle RFφBK ,  is determined 
from the overall desired roll stiffness φK  as follows 

FφBK  = φK . (
100

5Fw ) - φFK  = 508.6 . (
100

545 ) – 133.17 =  121.13   Nm / deg 

 
 

RφBK  =  φBK  -  FφBK  =  242.42 – 121.13 =  121.29  Nm / deg 

 

Because the anti-roll bar installation ratio  RFABIR ,  (the rate of anti-roll bar displacement / roll 
with body roll) is expected to be the same as the ratio for the springs    1,50 =IR=IR FABFAB  
and    1,40 =IR=IR RABRAB  , then the final front and rear anti-roll bar stiffness RFφABK ,  is :  
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4 DETERMINATION OF DAMPING COEFFICIENTS 

The baseline mean ride damping coefficients for each wheel of the front brFC  and rear axle 

brRC  result from the critical damping values brFcritC , brRcritC  (the critical damping coefficients 
of the sprung mass) multiplied by the recommended (Milliken & Milliken, 1995) damping 
ratios for the front and rear axle 0,4=ζ F , resp. 0,45=ζ R . 
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To obtain the final values of the mean damping coefficients set-up on the dampers, RFC , , 
these must be corrected by the corresponding installation ratio again 
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For better control of resonance and the energy released by the spring, more damping force 
is required by the damper during the rebound (bilinear model). This asymmetry 
for compression  CC  and extension EC  damping is expressed by the compression/extension 

ratio    RCE = 
E

C

C

C    with a typically value 0.4 as recommended from  (Dixon, 1999).  
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Then, the modified damping coefficients, as a starting point for the next suspension tuning 
for the linear progressivity of compression and extension, are calculated for both axles 
as follows 
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5 CONCLUSIONS 

This paper presents an approach for the determination of basic suspension parameters - spring 
stiffness, anti-roll bar stiffness and damping coefficients. The approach is based on linear 
vibrations dynamics and semi-experimental recommendations for the choice of basic constants.  
The presented approach can be applied for any road racing vehicle. 
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