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ABSTRACT: Simple formulas are developed for the mass scale load rating assessment 
of masonry arch bridges in terms of four geometrical parameters of the bridge.  The ultimate 
load limit state and the repeated load limit state constitute the theoretical background. 
The formulas are constructed as the minimum squares best suited to a set of linear and non-
linear finite element solutions of a representative selection of the country's bridge stock. 
The formulas are quadratic in the arch span and linear in the arch rise, arch thickness and fill 
depth.  The method can be used for other countries' masonry arch bridge stock; the data 
processing programme is portable.  The structure of the formulas and the country's bridge 
stock representation can be adapted to local conditions.  Nevertheless, new representations 
of bridge instances require rather demanding non-linear finite element solutions up until total 
collapse. This is the most laborious part of the formula’s development. 
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1 INTRODUCTION 

Load rating of masonry arch bridges is important for road maintenance and management. 
Its economic impact is considerable, owing to the large numbers of these structures 
in all developed countries. For the same reason, the assessment methods should be simple and 
applicable on a mass scale.  Also, inevitable uncertainties in material properties make the use 
of sophisticated analytical methods disputable.  The Czech Ministry of Transport therefore 
funded the development of a manual for the load rating of the country's masonry arch bridges, 
referred to as the Guide in the paper. The Guide is designed for local bridge engineers 
with standard civil engineering education and practice.  The simplicity requirement admits 
only semi-empirical formulas.  Pippard's formula, (Pippard 1938), see also Heyman (1982)  
became the basis of the MEXE load rating method, devised in the 1950s in a British military 
experimental establishment, which in turn has been adapted to several guides and is widely 
used today, (Highway Agency 1997, UIC 1995 and Min. of Transport CR 2000). Failure 
criteria play an important part in the development of semi-empirical formulas. The middle 
half rule is accommodated in Pippard's formula, whereas a relative thrust line eccentricity 
of 0.35 is allowed in Czech assessment tables, (Min. of Interior CR, 1989). A common 
deficiency of approximate methods and formulas is that the interaction of the barrel, fill, 
abutments and roadway is not properly accounted for.  As for the analytical methods, 
the greatest effort has been directed toward the accurate simulation of ultimate limit load 
states (ULS) and bridge collapse, see (Owen 1998, Fanning, Boothby, Roberts 2001 
and Fanning, Boothby 2003) among others.  The load rating, i.e., the load capacity for service 
conditions, is then derived as a fraction of the ultimate limit load.  Probably the most 
advanced and cited British design manual, Highway Agency (2001), recommends a safety 
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factor of γ =3.4, whereas, when the standard structural reliability factors of Eurocodes are 
combined, the reduction factor is 2.17. The latter value applies to the ultimate load based 
on characteristic values of material strengths and no dynamic factor is included.  The nature 
of the typical collapse, namely, the stability loss when four virtual hinges arise, see 
(Highway Agency 2001), does not admit the standard partial safety factor approach. 
A consistent probabilistic reliability theory fails, too, since necessary stochastic data 
is missing. The reduction of the ultimate load to the load rating for the service load 
is speculative and uncertain. Two concepts are utilized in the Guide development in order 
to reduce uncertainty. 

First, the ULS is not the only limit state from which the load rating is derived; a repeated 
load limit state (RLLS) is introduced. Second, the safety factor in the ULS is calibrated 
by comparison to other load rating methods.   The Guide features these basic concepts: 

1. The load rating method and structure models do not account for abutment, piers and 
foundation compliance and failure.  These structural parts require individual treatment 
that can hardly be condensed in a common guide. 

2. Two limit states, the ULS and the repeated load limit state (RLLS), defined below, 
determine the load rating.  

3. Simple semi-empirical formulas are derived as minimum squares best suited to a set 
of numerical finite element linear and non-linear solutions of a representative set 
of bridge instances termed the representation. 

4. Besides the direct semi-empirical formula for the load rating, criteria are provided 
for an elaborate assessment by linear numerical analysis. Their limit values follow 
from semi-empirical formulas as well.  

5. The two methods developed for the load rating, the direct semi-empirical formula 
and numerical analysis, are hierarchical as to their precision, work load and use. 

2 REPEATED LOAD LIMIT STATE  

In practice, most bridges are put out of service when excessive deterioration of masonry 
occurs, particularly deterioration of the joints.  This can be considered another limit state 
which belongs to the serviceability limit states in the CEN ENV 1991-1 1994 nomenclature. 
The associated limit load is a repetitive vehicle passage that does not induce cumulative 
persistent damage in the bridge structure. Experience shows that moderate cracks in the barrel 
can stabilize. The existence of cracks alone therefore is not a suitable criterion of the limit 
state. The relative crack depth c0 (with respect to the arch thickness) is adopted herein 
for the quantity to compare in this limit state.  It is assumed that a crack depth limit c0,lim 
exists for 'harmless' cracks, an analogy to the endurance limit in fatigue.  Unfortunately, 
sufficient experimental evidence on c0,lim will not be available in the foreseeable future. 
Despite this, the repeated load limit state (RLLS), is adopted for the second limit state 
in the project. The limit crack depth is determined by calibration and expert agreement, 
which is common practice in design standard criteria selection.  Note that non-linear structural 
analysis is indispensable for the RLLS solution in spite of the fact that it is a serviceability 
limit state. 

Recently, Melbourne et all (2007) proposed a similar limit state, the permissible limit state 
(PLS). The purpose of the PLS is similar. It is also unique for masonry arch bridges 
and should be additionally checked with the standard ultimate load limit state. Its definition 
is “the limit at which there is a loss of structural integrity that will measurably affect 
the ability of the bridge to carry its working loads for the expected life of the bridge”. Criteria 
of the PLS depend on the failure mode and are not definitely specified in the paper. 
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The authors present an example in which the criteria are the endurance limit compressive 
stress in bending and the longitudinal shear stress between rings in rings separation. 
The former is one half of the compressive strength with vague justification, the latter was 
determined from a series of laboratory tests (0.1 Mpa). It is difficult to imagine how 
the endurance limit shear stress could be determined for an existing bridge. Nevertheless, 
the paper indicates the need for a specific limit state for masonry arch bridges. 

3 PARAMETER RANGES AND THE BRIDGE POPULATION REPRESENTATION  

The ULS and RLLS are difficult to account for in simple assessment formulas. The approach 
adopted herein is based on numerical linear and non-linear solutions of the representation and 
their best fit approximation by the target semi-empiric formulas. Prospective users of 
the formulas need not know about the subtleties of the non-linear numerical solutions. Semi-
empiric formulas must have applicability ranges specified on their parameters, which should 
cover the country’s bridge population as much as possible. A survey of masonry arch bridge 
stock in the country has been conducted with a statistical assessment of their parameters. On 
this basis, a decision has been made on the ranges of the parameters to be covered by 
the target formula and by the representation. The outcome ranges of the geometrical 
parameters 

 
2<l<8[m],  0.15<h/l<0.5, 0.07<d/l<0.20, 0.08<s/l<0.45 

 
cover 95% of the country's stock. Parameters are shown in Fig.1.  

 
 
 
 
 
 
 
 
                   

Figure 1: Schematic longitudinal section, method parameters 
 
The parameter ranges govern the selection of bridge instances to be included 

in the representation and analysed. The survey did not identify any multi-ring arches so ring 
separation is not considered in the representation analyses. The results presented herein 
are based on a representation including 37 instances. They do not quite regularly cover 
the four-dimensional space of parameters (three values per parameter mean 34=81 instances). 
Convenience of mesh generations and similar aspects play a part in the instances selection. 
The representation is displayed in Fig. 4. The format of the instance legends is l-h-d-s. 
Note that absolute lengths are used in the legends. 

4 FINITE  ELEMENT LINE AR AND NON- LINEAR SOLUTIONS 
OF THE REPRESENTATION, BRIDGE STRUCTURE AND LOAD MODELS 

A simple target formula demands a simple structure model.  It is assumed that load carrying 
capacity depends mainly on the longitudinal bridge section. A plain strain 2D structure model 
is therefore sufficient to disclose the principal dependencies. This does not preclude 3D 
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analyses of individual structures as options in the numerical method (see section 6). Properties 
and parameters associated with the cross-sections of the bridges are included 'ex post' 
in approximate corrections if necessary.  This approach is rather common in theoretical 
and experimental bridge load capacity assessments and load rating methods since it saves full 
3D analyses.  A schematic longitudinal section of the bridge in Fig. 1 exposes the bridge 
parameters to be represented in the target formula, barrel span l, barrel rise h, barrel thickness 
d, and fill thickness s above the barrel crown.  These parameters appear in the mathematical 
formulation of the best fit problem specified in section 5. The inclination of the fill wedges 
was approximately the same for all representation instances.  The wedges provide 
approximately correct boundary conditions for the fill volume above the arch that takes part 
in the live load transition. They are fixed at the external (lower) boundaries and so are 
the ends of the arch.  An average thickness t=0.15 m is assumed for the roadway.  

Material models and constants are the same in the whole representation, see Table 1, and 
do not appear as variables in the formulas. This seems to be too radical an assumption, 
since the bridge load rating does not depend on the properties of the materials. Nevertheless, 
it has been used several times already, by Heyman (1982) and Fanning & Boothby (2003). 
The failure criteria of four bridges assessed in (Boothby, 2001) deliver the same results 
regardless of material strengths. These references testify that the assumption is acceptable. 
However, the main reason for its adoption is that material constants are not available 
for the formula's users. In routine applications, an engineer has only the results of a visual 
inspection with no quantitative data on material properties. A proper probe by (mostly) non-
destructive methods would often cost more than the bridge itself. 

For simplicity and easy comparison with foreign solutions, no tension material is assumed 
in the arch. The barrel in plain strain conditions can be modelled by 2D elements or by shell 
elements which reduce it to a 1D continuum.  

Three FEM non-linear packages have been used. Most computations have been done 
by Adina R&D, (2004), several results checked with Atena by Cervenka Consulting, (2007) 
and with an in-house code by Rericha, (2000), using the mesh generator by Rypl, (2004). All 
three packages feature similar material models and finite element types. A difference worth 
mentioning is that the third package supports layered shell elements with a suitable material 
model whereas in the first two, isoparametric 2D elements are used for the arch. The distorted 
mesh is shown in Fig. 2 prior to collapse for an instance of the representation. The cracked 
parts of the joints are indicated and plastic strain contours in the fill are displayed. 

Important restrictions are made on the live load variability.  With regard to the barrel span 
bounds eq. (1), the moving vehicle is reduced to a single axle (the rear axle of a truck) 
in a lane. Further, a single position of the axle in the span direction is considered at 1/4 
of the barrel span. If full variability of the live load were considered according to most 
standards, the determination of limit states would become unmanageable.  Reduction to 2D 
plain strain conditions entails the replacement of the actual axle pressure pattern by a uniform 
pressure strip in the lateral direction. The pressure strip is indicated by the double force 
in Fig. 2. Most papers cited in the introduction section adopt a similar live load proxy. 
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Figure 2: Finite element mesh, plastic zone in the fill and cracks 
in the arch joints at the ultimate load level for an instance bridge 

 
Tab. 1: Material models and constants, units m, t, s, kPa  

 Young 
modulus 

Poisson 
ratio density compr. 

strength 
tension 
strength cohesion friction 

angle 
yield 
stress 

arch 3.0+06 0.15 2.0 -3000. 10.    

fill, Mohr 
Coulomb 4.0+4 0.30 1.7   10. 0.50  

roadway, 
Mises 5.5+06 0.20 2.0     6000. 

 
Table functions ej(f) and c0,j(f) are recorded from the linear and non-linear analyses of each 

instance j where f denotes the load factor for the live load, ej(f) is the maximum relative thrust 
eccentricity in the linear solution of the instance j and c0,j(f) is the maximum relative crack 
depth in the non-linear solution. Maximum within the arch is meant here and relative refers 
to the arch thickness. Eliminating f yields functions ej(c0) which are further processed 
together with ultimate load factors fULS,j.  

5 RAW DATA PROCESSING AND PARAMETER CALIBRATION  

The criterion of the RLLS, c0 < c0,lim, is not acceptable for mass use since a non-linear bridge 
structure analysis is necessary on the part of the Guide user with every instance. In order to 
avoid it, a correlation is assumed between the crack depth in a non-linear analysis and 
the relative thrust force eccentricity in a linear analysis in the same bridge instance 
(at the same load level). The correlation is approximated by a quadratic function of c0 whose 
coefficients are functions of the bridge parameters, specified below.  

The RLLS criterion converts to e < e lim in the wake of the correlation. 
Table functions ej(c0) and ultimate limit loads fULS,j of all representation bridge instances are 

processed by a single purpose programme to obtain their least square approximations  
e(c0 ,l,h,d,s) and fULS (l,h,d,s). Actually, the approximations are linear in  h, d, s  and 

quadratic in l. For given bridge structure parameters and limit crack depth c0,lim, the ultimate 
limit load and limit relative eccentricity follow from these two approximations. Using 
the inverse functions to ej(f), the RLLS limit loads fRLLS,j are computed from the limit relative 
eccentricities. The final load ratings of the representation are fCAP,j  = min(fRLLS,j, , γ  fULS,j) 
where γ  is the safety factor with respect to the ULS. These are once again fitted by the least 
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square approximation  fCAP (l,h,d,s). This function and the limit relative eccentricity 
elim=e(c0,lim,l,h,d,s) are the results of raw data processing additionally to fULS (l,h,d,s).  

 Two values are subject to calibration, the admissible relative crack depth in the RLLS, 
c0,lim, and the safety factor γ  of the ULS.  Calibration is supported by a graphic display 
of the intermediate results.  An example is shown in Fig. 4, where the values  c0,lim=0.4 
and γ =3.4 are used and the semi-empiric formula results are compared to the MEXE 
method (Highways Agency, 1997) and the current Czech standard (Min. of Interior of the CR, 
1989).  On the vertical axis there are forces per 1 m wide strip of the arch. Comparable 
MEXE values are obtained by applying the span-rise and profile factors to the PAL values 
and dividing them by the lane width 3 m. Other factors of the MEXE method account 
for the material and condition and are not used to obtain comparable values. 

 

Figure 3: Load ratings of the representation [MN/m], vertically, ULS safety margin 
γ =3.4, limit relative crack depth c0,lim=0.4.  Blue squares – semi-empiric formula, 

red triangles - MEXE method, green asterisks - Czech standard. Instances 
of the representation are allocated on the horizontal axis by increasing parameters 

l, h, d and s (barrel span, rise and thickness and fill depth). 
 

Vertical alignment of most MEXE values corresponds to the upper bound 70 t of the PAL 
and testifies that the MEXE method is not suitable for the country's arch bridge stock. 
The Czech standard values on the other hand exhibit inadequate scatter and conservatism. 
The semi-empiric formula offers substantial improvement.  The calibration process remains 
open in that the representation can be extended. The current values of c0,lim and γ  may also 
change in the future. In particular, c0,lim should be bolstered by experimental evidence. Tests 
on eccentric compression of masonry specimens with cyclic reversed load are being prepared 
which should confirm the existence of the repeated load limit state and the suitability 
of its criterion. Processing of the linear and non-linear representation analyses results 
is programmed in Mathematica (Wolfram Research Ltd, 2006) including graphic output 
for easy calibration. The programme is available free upon request to the author. Most 
numerical representation solutions, however, can hardly be ported to other country conditions. 
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6 THE GUIDE APPLICATION  

The user checks first whether the bridge parameters and condition comply with Guide 
applicability conditions and parameter ranges. For routine use, the load rating formula fCAP 
(l,h,d,s) is explicitly given. The load rating is readily obtained by substitution of the actual 
bridge parameters. For later reference, this is termed the direct formula method.  

There are instances of particular importance when a more precise evaluation is desirable. 
The Guide offers an option for those cases when fULS (l,h,d,s) is greater than fCAP (l,h,d,s), 
that is, for the cases when the RLLS is decisive in the load rating assessment. A more 
elaborate structural model can produce a less conservative rating than the direct formula 
in these cases. The Guide provides a formula for the limit relative thrust eccentricity 
elim=e(c0,lim,l,h,d,s). The user performs a standard linear analysis of the bridge structure. 
The analysis should be performed with an adequate structure model accounting 
for the interaction of the barrel, fill, roadway and spandrels, true 3D distribution of the load 
and structural resistance. A finite element method will almost exclusively be used. 
The analysis is quasi-static, considering the superposition of the dead load and 
a proportionally growing live load according to the respective road load standard. 
The maximum thrust force eccentricity within the barrel grows with the growing live load 
level. When the limit relative thrust eccentricity elim is reached, the RLLS limit load fRLLS 
is achieved. It will be greater than the load rating by the direct formula in most cases. 
The final load rating is min(fRLLS, , γ  fULS ).  This is termed the numerical solution method. 
Its cost is incomparable to the direct formula method and its application will be rather 
exceptional. It may turn out to be acceptable with skew bridges, integral spandrel action 
and similar spatial phenomena.  

7 CONCLUSIONS  

A load rating method is developed for masonry arch bridges, suitable for mass scale 
application. Two hierarchical procedures are proposed, linear elastic numerical analysis 
and semi-empiric formula.  Both are based on two limit states, the ultimate load state and 
the repeated load limit state. The actual calibrated values of the limit crack depth and ultimate 
load safety factor yield load ratings better than the current Czech standard or the MEXE. 
The draft Guide with user instructions is entering the formal commissioning process 
to become official. 
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